I B.Tech - I Semester - Regular Examinations - JANUARY 2024 BASIC ELECTRICAL \& ELECTRONICS ENGINEERING
(Common for CE, ME, IT, AIML, DS)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts: Part-A and Part-B.
2. Each Part contains:

- 5 short answer questions. Each Question carries 1 Mark and
- 3 essay questions with an internal choice from each unit. Each question carries 10 marks.

3. All parts of Question paper must be answered in one place.

BL - Blooms Level
CO - Course Outcome

PART - A

		BL	CO
1.a)	Can superposition theorem be applied to AC and DC circuits?	L2	CO2
1.b)	Define Apparent power and Power factor.	L2	CO2
1.c)	Why is scale of MI instrument calibrated non- linearly?	L2	CO1
1.d)	List the applications of dc motor.	L2	CO 1
1.e)	Calculate the electricity bill amount for a month of 31 days, if 3 bulbs of 30 watts for 5 hours are used. Given the rate of electricity is 2 Rs. per unit.	CO	

| | | | BL | CO | Max.
 Marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | a) | Use the superposition theorem to find v
 in the circuit shown in Fig. | L4 | CO3 | 5 M |

	b)	In a series circuit containing pure resistance, a pure inductance and a pure capacitance. Obtain the Voltage and current relationship with phasor diagram and explain how to calculate the average power drawn by the circuit and power factor?	L3	CO 2	5 M
OR					
3	a)	An alternating voltage is given by $\mathrm{V}=230 \sin 314 \mathrm{t}$. Calculate i) frequency, ii) maximum value, iii) average value, iv) RMS value.	L4	CO3	5 M
	b)	State KCL, KVL and illustrate with an example how to calculate the currents and voltage.	L3	CO 2	5 M
UNIT-II					
4	a)	Outline the construction of DC machine.	L3	CO 2	5 M
	b)	Describe the construction and working principle of PMMC.	L3	CO 2	5 M
OR					
5	a)	Illustrate the construction and working of an alternator (or) synchronous generator.	L3	CO 2	5 M
	b)	Describe the working principle of DC generator with a neat sketch.	L3	CO 2	5 M
UNIT-III					
6	a)	Explain the working principle of Miniature circuit breaker (MCB), its merits and demerits.	L3	CO3	5 M

	b)	Describe the wind power generation.	L3	CO2	5 M
7	a)	Outline the Electric Shock, Causes, Symptoms and safety Precautions to avoid shock.	L3	CO3	5 M
b)	Illustrate the working of hydel power plant with a neat sketch.	L3	CO2	5 M	

PART - B

		BL	CO
1.f)	How depletion region is formed in a PN diode?	L3	CO4
1.g)	Covert the binary code 100110 to (($)_{10}$.	L3	CO4
1.h)	Explain the necessity of capacitor in Bridge Rectifier.	L3	CO4
1.i)	Mention the difference between Half wave and Full wave Rectifier.	L2	CO5
1.j)	What is a universal gate?	L2	CO4

			BL	CO	Max. Marks
8	a)	Outline the CB configuration of BJT with the help of input and output characteristics.	L4	CO5	5 M
	b)	What is PN junction diode? Explain the characteristics of PN junction diode in forward and reverse bias mode.	L3	CO4	5 M
OR					
9	a)	Explain the characteristics of zener diode in forward and reverse bias modes.	L3	CO4	5 M
	b)	Distinguish between avalanche breakdown and zener breakdown.	L4	CO5	5 M

UNIT-II						
10	a)	Describe the working of Public Address system.	L3	CO4	5 M	
b)	Analyze the working of common emitter (RC coupled) amplifier with its frequency response.	L4	CO5	5 M		
	OR					
11	a)	Analyze the output waveforms of full wave bridge rectifier with capacitive filter.	L4	CO5	5 M	
	b)	Describe the working of Zener voltage regulator with neat sketch.	L3	CO4	5 M	
UNIT-III						

